Modified Newton & Higher order iterations for multiple roots

A Modified Newton and higher orders Iteration for
multiple roots.
By Henrik Vestermark (hve@hvks.com)

Abstract:

In general Newton’s method for finding roots of polynomials is an effective and easy
algorithm to both implement and use. However certain weakness is exposed when trying
to find roots in a polynomial with multiple roots. This paper highlights the weakness and
devised a modification to the general Newton algorithm that effectively can cope with the
multiple roots issue. Furthermore, we also address a solution for higher order methods as
well which include Halley’s and Householders 3™ order methods.

Introduction:

Newton’s method for finding the roots of polynomials is one of the most popular and
simple’s methods. Newton’s methods use the following algorithm to progressively find
values closer and closer to the root.

P(x,)
X — - "7
n+l n P'(xn)

Graphically the next iteration step can be visualized by the interception of the tangent and
the x-axis as pictured below.
10 x

y = f(x)

N
e —_—

Consider the polynomial:

10 February 2023 Page 1

Modified Newton & Higher order iterations for multiple roots

P(x)=(x-1D(x=2)(x=3)(x—4) or P(x)=x"-10x" +35x> —50x + 24

Using a starting point of 0.5 the Newton iteration progress as follows toward the first
root:

X P(x)

Initial guess 0.5

0.798295454545455 6.6E+00
0.950817599863883 1.7E+00
0.996063283034122 3.2E-01
0.999971872651986 2.4E-02
0.999999998549667 1.7E-04
0.999999999999999 8.7E-09
1.000000000000000 7.1E-15

N o o A WN

As we can see we get the first root x=1 after only 7 iterations. We also notice that after

the second iteration x,=0.95, we roughly double the number of correct digits towards the
first root for each iteration. An iteration method that doubles the number of correct digits
for each iteration is said to have a convergence rate of 2 or a quadratic convergence rate.

Now let’s change the polynomial and introduce a double root at x=1;
P(x)=(x-1)*(x=3)(x—4) or P(x)=x"-9x +27x*> =31x+12
With the same starting point x=0.5, we get a much slower convergence and after 27

iterations we get no more improvement towards the first root of x=1 and the result is only
accurate to approximately the first 8 digits.

X P(x)
Initial guess 0.5
1 0.713414634146341 2.2E+00
2 0.842942878437970 6.2E-01
3 0.916937117337937 1.7E-01
4 0.957125910632703 4.4E-02
5 0.978193460613943 1.1E-02
6 0.988999465124113 2.9E-03
7 0.994474755305804 7.3E-04
8 0.997231047313269 1.8E-04
9 0.998613930094809 4.6E-05
10 0.999306565270595 1.2E-05
11 0.999653182516675 2.9E-06
12 0.999826566206109 7.2E-07
13 0.999913276837495 1.8E-07

10 February 2023 Page 2

Modified Newton & Higher order iterations for multiple roots

14 0.999956636851837 4.5E-08
15 0.999978318031447 1.1E-08
16 0.999989158927746 2.8E-09
17 0.999994579429255 7.1E-10
18 0.999997289653755 1.8E-10
19 0.999998644904010 4.4E-11
20 0.999999322514237 1.1E-11
21 0.999999661405383 2.8E-12
22 0.999999831034522 6.9E-13
23 0.999999916015677 1.7E-13
24 0.999999956555190 4.1E-14
25 0.999999976999021 1.1E-14
26 0.999999996306426 5.3E-15
27 0.999999996306426 0.0E+00

What exactly happens here?
If P(x)=(x—1)*(x—3)(x—4) Then P'(x) = (x—1)(4x* —23x+31)

The root x=1 is both a root for the original Polynomial P(x) but also of P’(x). In a
Newton iteration, both P(x) and P’(x) go towards 0 introducing round-off errors in the
accuracy of calculating the next x,+1 in a Newton iteration. For illustration, we repeat the
iteration step but include the P’(x). Furthermore, we introduce the convergence rate g as
well.

X P(x) P'(x) q
Initial guess 0.5

1 0.713414634146341 2.2E+00 -1.0E+01

2 0.842942878437970 6.2E-01 -4.8E+00 1.3
3 0.916937117337937 1.7E-01 -2.3E+00 1.2
4 0.957125910632703 4.4E-02 -1.1E+00 1.2
5 0.978193460613943 1.1E-02 -5.4E-01 1.2
6 0.988999465124113 2.9E-03 -2.7E-01 1.2
7 0.994474755305804 7.3E-04 -1.3E-01 1.1
8 0.997231047313269 1.8E-04 -6.7E-02 1.1
9 0.998613930094809 4.6E-05 -3.3E-02 1.1
10 0.999306565270595 1.2E-05 -1.7E-02 1.1
11 0.999653182516675 2.9E-06 -8.3E-03 1.1
12 0.999826566206109 7.2E-07 -4.2E-03 1.1
13 0.999913276837495 1.8E-07 -2.1E-03 1.1
14 0.999956636851837 4.5E-08 -1.0E-03 1.1
15 0.999978318031447 1.1E-08 -5.2E-04 1.1
16 0.999989158927746 2.8E-09 -2.6E-04 1.1

10 February 2023 Page 3

Modified Newton & Higher order iterations for multiple roots

17 0.999994579429255 7.1E-10 -1.3E-04 11
18 0.999997289653755 1.8E-10 -6.5E-05 11
19 0.999998644904010 4.4E-11 -3.3E-05 11
20 0.999999322514237 1.1E-11 -1.6E-05 1.0
21 0.999999661405383 2.8E-12 -8.1E-06 1.0
22 0.999999831034522 6.9E-13 -4.1E-06 1.0
23 0.999999916015677 1.7E-13 -2.0E-06 1.0
24 0.999999956555190 4.1E-14 -1.0E-06 1.0
25 0.999999976999021 1.1E-14 -5.2E-07 1.0
26 0.999999996306426 5.3E-15 -2.8E-07 -

27 0.999999996306426 0.0E+00 -4.4E-08 -

We notice a couple of things; the convergence rate ¢ is much slower than for our first
example; ~2 versus ~1.1. Furthermore, we can see for each iteration that the root
convergence with a linear factor of 2 instead of what we should expect from the quadratic
factor 2 from our first example.

For higher orders multiplicity of roots, it gets even worse. E.g.

If P(x)=(x—1)*(x—4) Then P'(x)=(x—1)>(4x—13)

After 31 iterations we get x=0.999998662746209 which is only accurate to
approximately the first 5 digits.

X P(x) P'(x) q
Initial guess 0.5
1 0.659090909090909 4.4E-01 -2.8E+00

0.768989234449761 1.3E-01 -1.2E+00 1.2

29 0.999995827925540 4.4E-16 -2.9E-10 1.0

30 0.999998662746209 4.4E-16 -1.6E-10 -
31 0.999998662746209 0.0E+00 -1.6E-11 -

What to do about multiple roots with the Newton iteration?:
To see what is going on with the Newton iteration for multiple roots we first have to
rewrite the Polynomial to the form:

P(x) = (x~a)"P,(x)

Where we have separated the multiple roots (x-a)™ from the remainder polynomial P(x)
that have roots well separated from a.

10 February 2023 Page 4

Modified Newton & Higher order iterations for multiple roots

_ P(x,)

" P(x,)
(x—a)"P(x)

Xps1 =X, — -

" (x—a)"" (mP.(x)+ (x—a)P!(x,))

NN C0 i ACH

T (x—a)" (mP(x,))

Applying the Newton step x,,, = x we get

When x is in the neighborhood of the multiple roots a; or

1 (-a)"P(x,)
m (x—a)" P.(x,)

xn+1 :g(xn):xn -

Near the root a we will have that g'(x,) ~ is approximate constant. Differentiate the
above equation you get:

, m—1 1
gla)y="=1-—
m m

The above equation shows that our Newton step is reduced with a factor equivalent to the
multiplicity of the root m. For m=2 the accuracy is only improved with a linear factor of
2.

To overcome this reduction of the Newton step size we could multiply it with m so we
instead used the modified Newton iteration.

P(x,)

! P'(x,)

n

When we encounter multiple roots.

Applying the modified equation we see that we quickly converge in just 5 iterations to
the root with a quadratic factor q ~ 2 for the normal use of the Newton method with an
accuracy of more than 9 digits.

X P(x) P'(x) q
Initial guess 0.5
0.903846153846154 1.3E+00 -6.5E+00
0.994609766904563 3.1E-02 -6.9E-01 2.2
0.999980785567113 8.8E-05 -3.3E-02 2.1
0.999999999740396 1.1E-09 -1.2E-04 -
0.999999999740396 0.0E+00 -1.6E-09 -

T A W N B

10 February 2023 Page 5

Modified Newton & Higher order iterations for multiple roots

The only issue is that we don’t know beforehand if we are dealing with a multiple-root
issue or not. However, we can use previous iteration step information to determine the

multiplicity of the root.

Iterate towards m multiple roots the error is reduced with a constant factor per iteration

given by:

e, =e,(1-1)
m

As for our example with 2 multiple roots, the factor is 0.5 which is exactly what we saw
in the iteration step from 7 to 25 in our first example for two multiple roots.

To determine the multiplicity of the root we can use the above formula for two

consecutive iteration steps.

e =,(1=1) and ¢, = ¢, ,(1-—).
m m

Subtracting the two equations we get

1
en+1 - en = (en - en—l)(1 - _) .
m

Replacing en+1 with (xn+1-a) near the root a and e, with (xq-a) we get.

1
xn+1 - xn = (xn - xn—l)(1 - _)
m

X

n n—1

X

x+1_ n

D ., = (l—l), where D, = —
m

1

m =
(I—D

)

n+l

With the above equation, we can now calculate the multiplicity of the root as we do our

Newton iteration. Using the polynomial

P(x)=(x-1)°(x=3)(x-4) or P(x)=x"-9x +27x* —=31x+12. We get

X

Initial guess 0.5
1 0.713414634146341
2 0.842942878437970
3 0.916937117337937
4 0.957125910632703

P(x)

2.2E+00
6.2E-01
1.7E-01
4.4E-02

=

:L_x”z(l_i) =
m

P'(x)

-1.0E+01
-4.8E+00
-2.3E+00
-1.1E+00

Dn

0.57
0.54

m

23
2.2

1.3
1.2
1.2

10 February 2023

Page 6

Modified Newton & Higher order iterations for multiple roots

O 00 N o »n

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

0.978193460613943
0.988999465124113
0.994474755305804
0.997231047313269
0.998613930094809
0.999306565270595
0.999653182516675
0.999826566206109
0.999913276837495
0.999956636851837
0.999978318031447
0.999989158927746
0.999994579429255
0.999997289653755
0.999998644904010
0.999999322514237
0.999999661405383
0.999999831034522
0.999999916015677
0.999999956555190
0.999999976999021
0.999999996306426
0.999999996306426

1.1E-02
2.9E-03
7.3E-04
1.8E-04
4.6E-05
1.2E-05
2.9E-06
7.2E-07
1.8E-07
4.5E-08
1.1E-08
2.8E-09
7.1E-10
1.8E-10
4.4E-11
1.1E-11
2.8E-12
6.9E-13
1.7E-13
4.1E-14
1.1E-14
5.3E-15
0.0E+00

-5.4E-01
-2.7E-01
-1.3E-01
-6.7E-02
-3.3E-02
-1.7E-02
-8.3E-03
-4.2E-03
-2.1E-03
-1.0E-03
-5.2E-04
-2.6E-04
-1.3E-04
-6.5E-05
-3.3E-05
-1.6E-05
-8.1E-06
-4.1E-06
-2.0E-06
-1.0E-06
-5.2E-07
-2.8E-07
-4.4E-08

0.52
0.51
0.51
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.48
0.50
0.94
0.00

2.1
2.1
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.9
2.0
18.0
1.0

1.2
1.2
11
11
11
11
11
11
11
11
11
11
11
11
11
1.0
1.0
1.0
1.0
1.0
1.0

Notice that D, as expected is 0.5 and m is 2. For a polynomial with a multiplicity of 3, we

get. E.g.

P(x)=(x-1)°(x-4) or P(x)=x*-7x> +15x* —13x+4.

Initial guess

O 00 N O Ul b WN -

10

X
0.5
0.659090909090909
0.768989234449761
0.844200342036924
0.895292762147974
0.929807171624113
0.953027819025432
0.968605165792479
0.979034107860224
0.986006608556179
0.990663864788857

P(x)

4.4E-01
1.3E-01
4.0E-02
1.2E-02
3.6E-03
1.1E-03
3.2E-04
9.4E-05
2.8E-05
8.3E-06

P'(x)

-2.8E+00
-1.2E+00
-5.3E-01
-2.3E-01
-1.0E-01
-4.6E-02
-2.0E-02
-9.0E-03
-4.0E-03
-1.8E-03

Dn

0.68
0.68
0.68
0.67
0.67
0.67
0.67
0.67

3.2
3.1
3.1
3.1
3.0
3.0
3.0
3.0

1.2
11
11
11
11
11
11
11
11

10 February 2023

Page 7

Modified Newton & Higher order iterations for multiple roots

11 0.993772694924434 2.4E-06 -7.9E-04 0.67 3.0 11
12 0.995847030978970 7.3E-07 -3.5E-04 0.67 3.0 11
13 0.997230716376341 2.2E-07 -1.6E-04 0.67 3.0 11
14 0.998153527238367 6.4E-08 -6.9E-05 0.67 3.0 11
15 0.998768892029038 1.9E-08 -3.1E-05 0.67 3.0 11
16 0.999179205334757 5.6E-09 -1.4E-05 0.67 3.0 11
17 0.999452778575931 1.7E-09 -6.1E-06 0.67 3.0 1.0
18 0.999635174582289 4.9E-10 -2.7E-06 0.67 3.0 1.0
19 0.999756779088727 1.5E-10 -1.2E-06 0.67 3.0 1.0
20 0.999837850465727 4.3E-11 -5.3E-07 0.67 3.0 1.0
21 0.999891897587627 1.3E-11 -2.4E-07 0.67 3.0 1.0
22 0.999927925394456 3.8E-12 -1.1E-07 0.67 3.0 1.0
23 0.999951956279215 1.1E-12 -4.7E-08 0.67 3.0 1.0
24 0.999967946216671 3.3E-13 -2.1E-08 0.67 3.0 1.0
25 0.999978847780829 1.0E-13 -9.2E-09 0.68 3.1 1.0
26 0.999985795662453 2.8E-14 -4.0E-09 0.64 2.8 1.0
27 0.999990197716745 8.0E-15 -1.8E-09 0.63 2.7 1.0
28 0.999994305994514 3.6E-15 -8.6E-10 0.93 15.0 11
29 0.999995827925540 4.4E-16 -2.9E-10 0.37 1.6 1.0
30 0.999998662746209 4.4E-16 -1.6E-10 1.86 -1.2 -

31 0.999998662746209 0.0E+00 -1.6E-11 0.00 1.0 -

Again we get D, = 2/3 and m = 3 as expected.

And by using the multiplier m=3 we get:

Multiplier 3
X P(x) P'(x) Dn m q
Initial guess 0.5

1 0.977272727272727 4.4E-01 -2.8E+00
2 0.999943181817001 3.5E-05 -4.7E-03 2.6
3 1.000000084812110 5.5E-13 -2.9E-08 0.00 1.0 0.4
4 1.019736926917380 4.4E-16 -6.8E-14 346.85 0.0 1.0
5 0.999956334044330 -2.3E-05 -3.5E-03 -1.00 0.5 2.6
6 0.999999964612765 2.5E-13 -1.7E-08 0.00 1.0 -
7 0.999999964612765 0.0E+00 -1.1E-14 0.00 1.0 -

With 7 correct digits after 7 iterations. Also notice that Newton was throwing a little bit
of course in iteration 4 due to the round-off errors being strong around multiple roots.

Practical implementation

10 February 2023 Page 8

Modified Newton & Higher order iterations for multiple roots

I have seen one implementation of the above strategy and that is Madsen [1] which uses a
variable Newton step size to ensure quadratic convergence of the Newton method even
for multiple roots. Other methods have been described in McNamee [2].

Halley’s method

Let’s turn our attention to a higher-order method. One of them is Halley which is a cubic
convergence method meaning that for each iteration step, we triple the number of correct
digits in our root.

Halley‘s method uses the iteration:

_ 2P(x)P'(x)
" 2P'(x,) ~ P(x,)P'(x,)

n+l

Or sometimes written as: ([5] Peter Acklam)

.- _ P(x,) l_P(xn)P"(x”))
n+l n Pr(xn) 2Pr(xn)2

P
Where x,,, =x, — % is the usual Newton iteration enhanced with the factor:
xl’l
| PE)P')
2P'(x,)’

And are graphically shown below:

Applied to our usual test polynomial:

10 February 2023 Page 9

Modified Newton & Higher order iterations for multiple roots

P(x)=(x-D(x-2)(x—-3)(x—4) or P(x)= x* =10x® +35x* —50x + 24

We get using a starting point of 0.5 the Halley iteration progress as follows toward the
first root:

X P(x) m q
Initial guess 0.5
1 0.921033445730429 6.6E+00
2 0.999101217617920 5.5E-01 2.8
3 0.999999998290928 5.4E-03 1.0 2.9
4 1.000000000000000 1.0E-08 1.0 1.7
5 1.000000000000000 -7.1E-15 1.0 1.0

Using 2 iterations less than the Newton method and a convergence rate that approximates
the theoretical 3 for cubic methods.

Applied to our multiple root test polynomial we get as expected a much slower

convergence but still significantly better than the Newton method 27 iterations versus
Halley 17 iterations.

P(x)=(x-1)°*(x=3)(x—4) or P(x)=x"-9x> +27x*> =31x+12

X P(x) m q
Initial guess 0.5

1 0.810337370242215 2.2E+00
2 0.933368912312335 2.5E-01 1.5
3 0.977372635121701 2.8E-02 2.1 1.3
4 0.992409863611796 3.1E-03 2.0 1.3
5 0.997464609321869 3.5E-04 2.0 1.2
6 0.999154274154362 3.9E-05 2.0 1.2
7 0.999718025142576 4.3E-06 2.0 1.1
8 0.999906001018135 4.8E-07 2.0 1.1
9 0.999968666187712 5.3E-08 2.0 1.1
10 0.999989555309201 5.9E-09 2.0 1.1
11 0.999996518432377 6.5E-10 2.0 1.1
12 0.999998839531160 7.3E-11 2.0 1.1
13 0.999999612788777 8.1E-12 2.0 1.1
14 0.999999870639296 9.0E-13 2.0 1.1
15 0.999999957852718 1.0E-13 2.0 1.1
16 0.999999980034920 8.9E-15 1.7 -
17 0.999999980034920 0.0E+00 1.0 -

10 February 2023 Page 10

Modified Newton & Higher order iterations for multiple roots

As for the Newton method applying the same technique, we find that Dy is given by
X

x+1_ n

=1- , WwhereD, =—*

=

Equivalent to the Newton reduction the Halley reduction is a factor of 2/(m+1) so by
multiplier the step size with the reverse factor we should ensure a cubic convergence rate.

Our modified Halley will be:

_m+l 2P(x,)P'(x,)

e e T P () — P(x,)P (x,)

n+l xn

Which could also be written as:

m+1 P(x,) { P(xn)P"(xn)]l
X, =X, — 1-
" 2 Pl(x,) 2P'(x,)’

Using our modified Halley iteration, we get to use our multiple root test polynomials:

P(x)=(x-1)*(x=3)(x—4) or P(x)=x"-9x +27x*> =31x+12

X P(x) m q
Initial guess 0.5

1 0.965506055363322 2.2E+00
2 0.999833351530136 7.3E-03 2.6
3 0.999999996140290 1.7E-07 1.0 2.1
4 0.999999986501257 -1.8E-15 1.0 0.9
5 1.000000014202640 1.8E-15 -0.5 -
6 1.000000014202640 0.0E+00 1.0 -

Again as we expected approached cubic convergence and found the root to 7 correct
digits in just 6 iterations.

Hansen & Patrick [4] is a special case of Halley and use this variation:

X =X

n+l n

B P(x,)
Wl POP)
2m 2P'(x,)

10 February 2023 Page 11

Modified Newton & Higher order iterations for multiple roots

Or written in another way:

L _Pa)[mel PGP, B
T P(x)| 2m 2P'(x,)?

P(x

!

P'(x

n

1s the usual Newton iteration modified with the factor:

Where x,,, =x, —

n

m+l Px)P'x)|
2m 2P (x,)’

This could also have been shown using the Halley formula:

o Pe [Pe)PE)]
T Pl 2P,

Replacing P(x,) with:

P(x) = (x - a)" P, (x)
P'(x) = (x—a)"" ((x —)P, (x)+mP.(x))
P'(x) = (x—a)">(x—a)*P. (x)+2m(x—a)P, (x)+m(m—1)P.(x))

Into : {1 - —P(x”)P,)}

2P'(x,)?

You get:

PG (=)+ 2mx =P,)+ n=1mP (3] |
1_

2(x—a)P, (x,)+mP,(x,))’

Eliminating all (a-x)? and (x-a) when close to the root a you get

{1 Rl -)m, (xn)]T _ [1 (- 12>m}‘ . {m_ﬂ} _, 2m
2(mP.(x,)) 2m 2m m+1

For m=1 we get the factor 1, m=2 we get the factor 1.33 and for m=3 we get 1.5 and for
m=4 we get 1.6. Substituting this result into our original

10 February 2023 Page 12

Modified Newton & Higher order iterations for multiple roots

_ _m+l P(x,) 2m
T2 Pl(x) m+]

P(x,)
n+l n m ’
P'(x,)

Which is the usual Newton iteration for multiple roots.

Using [4] for multiple roots or our modified Halley iteration we get similar results.

Householder 3" order method

Let’s turn our attention to the next higher-order methods. The Household has generalized
the higher order methods in which 1% order is Newton’s and 2™ order is Halley’s method.
Householders 3™ order has a quantic convergence rate.

The Householder’s 3™ order method uses the following iteration:

N 6P(x,)P'(x,)" ~3P(x,)’ P'(x,)
T 6P'(x,) = 6P(x,)P'(x,) P(x,) + P(x,)" P"(x,)

See [3] Pascal Sebah and Xavier Gourdon (2001.

Substituting:
_ P(x,)
P'(x,)
P'(x,)
U=——">7"
P'(x,)
P!”(xn)
v=—-""=
P'(x,)

We can now write the householder’s 3™ order as follows:

. t(1-0.5tu)

vt
1-t(u——
(6)

Applied to our usual test polynomial:

10 February 2023 Page 13

Modified Newton & Higher order iterations for multiple roots

P(x)=(x-1D(x=2)(x=3)(x—4) or P(x)=x"-10x" +35x> —50x + 24

We get using a starting point of 0.5 the Householder iteration progress as follows towards
the first root:

X P(x) m q
Initial guess 0.5
0.970345147974213 6.6E+00
0.999998181755405 1.9E-01 3.8

1.000000000000000 1.1E-05 1.0 -
1.000000000000000 0.0E+00 1.0 -

A WO N -

Using 3 iterations less than the Newton method and one less than Halley’s method and a
convergence rate that approximates the theoretical 4 for quartic methods.

Applied to our multiple root test polynomial we get as expected a much slower

convergence but still significantly better than the Newton method’s 27 iterations versus
Halley’s 17 iterations and Householder 3™ order of 14.

P(x)=(x-1)°*(x=3)(x—4) or P(x)=x"-9x> +27x*> =31x+12

X P(x) m q
Initial guess 0.5

1 0.861059798855960 2.2E+00
2 0.964231209357945 1.3E-01 1.6
3 0.990990668543017 7.9E-03 2.1 14
4 0.997743431685646 4.9E-04 2.0 1.3
5 0.999435592582946 3.1E-05 2.0 1.2
6 0.999858881551644 1.9E-06 2.0 1.2
7 0.999964719352181 1.2E-07 2.0 1.2
8 0.999991179774371 7.5E-09 2.0 1.1
9 0.999997794908371 4.7E-10 2.0 1.1
10 0.999999448583258 2.9E-11 2.0 1.1
11 0.999999862128834 1.8E-12 2.0 1.1
12 0.999999970461575 1.2E-13 2.1 1.1
13 0.999999993287772 5.3E-15 1.8 -
14 0.999999993287772 0.0E+00 1.0 -

As for the Newton methods when applying the same technique we find that D, for
householder 3™ order is given by

10 February 2023 Page 14

Modified Newton & Higher order iterations for multiple roots

X, —X
=1- , Where D, =—1—"1 —
m+2 X, —X

n n-1

Equivalent to the Newton reduction the Householder 3™ order reduction is a factor of
3/(m+2) so by multiplier the step size with the reverse factor we should ensure a quartic
convergence rate.

Our modified Householder 3™ order will be:

ooy 2 [6P(x,)P'(x,)* —=3P(x,)’ P"(x,)]
T3t 6P (x,)} —6P(x,)P'(x,)P"(x,) + P(x,)’ P"(x,)

Or using the same substitution as before:

x =x _m+2[t(l—O.Stu)]

n+l n
3

vt
1—t(u——
(6)

Using our modified Householder 3™ order iteration we get using our multiple root test
polynomials:

P(x)=(x-1)°*(x=3)(x—4) or P(x)=x"-9x> +27x*> =31x+12

X P(x) m q
Initial guess 0.5
0.981413065141280 2.2E+00
0.999975915594327 2.1E-03 2.7

0.999999999958017 3.5E-09 1.0 -
0.999999999958017 0.0E+00 1.0 -

E- NS \S R)

Again as we expected approached cubic convergence and found the multiple roots to 10
correct digits in just 4 iterations.

Conclusion
Newton, Halley’s, and higher order Householders can all be modified to deal with the
multiple roots issue that will ensure the same convergence rate as for non-multiple roots.

Thereby eliminating one of the weaknesses these methods have.

Reference

10 February 2023 Page 15

Modified Newton & Higher order iterations for multiple roots

1. Kaj Madsen, A Root-finding Algorithm based on Newton’s Method, Bit 13
(1973) page 71-75

2. McNamee, J.M., Numerical Methods for Roots of Polynomials, Part I, Elsevier,
Kidlington, Oxford 2009.

3. Pascal Sebah and Xavier Gourdon (2001). "Newton's method and high order iteration"

4. E Hansen & M. Ptraick, A family of root finding methods, Numerical. Math 27 (1077) 257-
269

5. Peter Acklam, A small paper on Halley’'s method, http://home/online.no~pjacklam, 23
December 2002

10 February 2023 Page 16

