
Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 1

A Modified Newton and higher orders Iteration for
multiple roots.

By Henrik Vestermark (hve@hvks.com)

Abstract:
In general Newton’s method for finding roots of polynomials is an effective and easy
algorithm to both implement and use. However certain weakness is exposed when trying
to find roots in a polynomial with multiple roots. This paper highlights the weakness and
devised a modification to the general Newton algorithm that effectively can cope with the
multiple roots issue. Furthermore, we also address a solution for higher order methods as
well which include Halley’s and Householders 3rd order methods.

Introduction:
Newton’s method for finding the roots of polynomials is one of the most popular and
simple’s methods. Newton’s methods use the following algorithm to progressively find
values closer and closer to the root.

)(

)(
1

n

n
nn xP

xP
xx

Graphically the next iteration step can be visualized by the interception of the tangent and
the x-axis as pictured below.

Consider the polynomial:

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 2

24503510)()4)(3)(2)(1()(234 xxxxxPorxxxxxP

Using a starting point of 0.5 the Newton iteration progress as follows toward the first
root:

 x P(x)
Initial guess 0.5

1 0.798295454545455 6.6E+00
2 0.950817599863883 1.7E+00
3 0.996063283034122 3.2E-01
4 0.999971872651986 2.4E-02
5 0.999999998549667 1.7E-04
6 0.999999999999999 8.7E-09
7 1.000000000000000 7.1E-15

As we can see we get the first root x=1 after only 7 iterations. We also notice that after
the second iteration x2=0.95, we roughly double the number of correct digits towards the
first root for each iteration. An iteration method that doubles the number of correct digits
for each iteration is said to have a convergence rate of 2 or a quadratic convergence rate.

Now let’s change the polynomial and introduce a double root at x=1;

1231279)()4)(3()1()(2342 xxxxxPorxxxxP

With the same starting point x=0.5, we get a much slower convergence and after 27
iterations we get no more improvement towards the first root of x=1 and the result is only
accurate to approximately the first 8 digits.

 x P(x)
Initial guess 0.5

1 0.713414634146341 2.2E+00
2 0.842942878437970 6.2E-01
3 0.916937117337937 1.7E-01
4 0.957125910632703 4.4E-02
5 0.978193460613943 1.1E-02
6 0.988999465124113 2.9E-03
7 0.994474755305804 7.3E-04
8 0.997231047313269 1.8E-04
9 0.998613930094809 4.6E-05

10 0.999306565270595 1.2E-05
11 0.999653182516675 2.9E-06
12 0.999826566206109 7.2E-07
13 0.999913276837495 1.8E-07

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 3

14 0.999956636851837 4.5E-08
15 0.999978318031447 1.1E-08
16 0.999989158927746 2.8E-09
17 0.999994579429255 7.1E-10
18 0.999997289653755 1.8E-10
19 0.999998644904010 4.4E-11
20 0.999999322514237 1.1E-11
21 0.999999661405383 2.8E-12
22 0.999999831034522 6.9E-13
23 0.999999916015677 1.7E-13
24 0.999999956555190 4.1E-14
25 0.999999976999021 1.1E-14
26 0.999999996306426 5.3E-15
27 0.999999996306426 0.0E+00

What exactly happens here?

If)4)(3()1()(2 xxxxP Then)31234)(1()(' 2 xxxxP

The root x=1 is both a root for the original Polynomial P(x) but also of P’(x). In a
Newton iteration, both P(x) and P’(x) go towards 0 introducing round-off errors in the
accuracy of calculating the next xn+1 in a Newton iteration. For illustration, we repeat the
iteration step but include the P’(x). Furthermore, we introduce the convergence rate q as
well.

 x P(x) P'(x) q
Initial guess 0.5

1 0.713414634146341 2.2E+00 -1.0E+01
2 0.842942878437970 6.2E-01 -4.8E+00 1.3
3 0.916937117337937 1.7E-01 -2.3E+00 1.2
4 0.957125910632703 4.4E-02 -1.1E+00 1.2
5 0.978193460613943 1.1E-02 -5.4E-01 1.2
6 0.988999465124113 2.9E-03 -2.7E-01 1.2
7 0.994474755305804 7.3E-04 -1.3E-01 1.1
8 0.997231047313269 1.8E-04 -6.7E-02 1.1
9 0.998613930094809 4.6E-05 -3.3E-02 1.1

10 0.999306565270595 1.2E-05 -1.7E-02 1.1
11 0.999653182516675 2.9E-06 -8.3E-03 1.1
12 0.999826566206109 7.2E-07 -4.2E-03 1.1
13 0.999913276837495 1.8E-07 -2.1E-03 1.1
14 0.999956636851837 4.5E-08 -1.0E-03 1.1
15 0.999978318031447 1.1E-08 -5.2E-04 1.1
16 0.999989158927746 2.8E-09 -2.6E-04 1.1

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 4

17 0.999994579429255 7.1E-10 -1.3E-04 1.1
18 0.999997289653755 1.8E-10 -6.5E-05 1.1
19 0.999998644904010 4.4E-11 -3.3E-05 1.1
20 0.999999322514237 1.1E-11 -1.6E-05 1.0
21 0.999999661405383 2.8E-12 -8.1E-06 1.0
22 0.999999831034522 6.9E-13 -4.1E-06 1.0
23 0.999999916015677 1.7E-13 -2.0E-06 1.0
24 0.999999956555190 4.1E-14 -1.0E-06 1.0
25 0.999999976999021 1.1E-14 -5.2E-07 1.0
26 0.999999996306426 5.3E-15 -2.8E-07 -
27 0.999999996306426 0.0E+00 -4.4E-08 -

We notice a couple of things; the convergence rate q is much slower than for our first
example; ~2 versus ~1.1. Furthermore, we can see for each iteration that the root
convergence with a linear factor of 2 instead of what we should expect from the quadratic
factor 2 from our first example.
For higher orders multiplicity of roots, it gets even worse. E.g.

If)4()1()(3 xxxP Then)134()1()(' 2 xxxP

After 31 iterations we get x=0.999998662746209 which is only accurate to
approximately the first 5 digits.

 x P(x) P'(x) q
Initial guess 0.5

1 0.659090909090909 4.4E-01 -2.8E+00
2 0.768989234449761 1.3E-01 -1.2E+00 1.2
…
29 0.999995827925540 4.4E-16 -2.9E-10 1.0
30 0.999998662746209 4.4E-16 -1.6E-10 -
31 0.999998662746209 0.0E+00 -1.6E-11 -

What to do about multiple roots with the Newton iteration?:
To see what is going on with the Newton iteration for multiple roots we first have to
rewrite the Polynomial to the form:

)()()(xPaxxP r
m

Where we have separated the multiple roots (x-a)m from the remainder polynomial Pr(x)
that have roots well separated from a.

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 5

Applying the Newton step
)(

)(
1

n

n
nn xP

xP
xx

 we get

))()()(()(

)()(
11

nrr
m

r
m

nn
xPaxxmPax

xPax
xx

))(()(

)()(
11

nr
m

nr
m

nn xmPax

xPax
xx

When x is in the neighborhood of the multiple roots a; or

)()(

)()(1
)(

11
nr

m
nr

m

nnn xPax

xPax

m
xxgx

Near the root a we will have that)(' nxg is approximate constant. Differentiate the

above equation you get:

mm

m
ag

1
1

1
)(

The above equation shows that our Newton step is reduced with a factor equivalent to the
multiplicity of the root m. For m=2 the accuracy is only improved with a linear factor of
2.

To overcome this reduction of the Newton step size we could multiply it with m so we
instead used the modified Newton iteration.

)(

)(
1

n

n
nn xP

xP
mxx

 When we encounter multiple roots.

Applying the modified equation we see that we quickly converge in just 5 iterations to
the root with a quadratic factor q ~ 2 for the normal use of the Newton method with an
accuracy of more than 9 digits.

 x P(x) P'(x) q
Initial guess 0.5

1 0.903846153846154 1.3E+00 -6.5E+00
2 0.994609766904563 3.1E-02 -6.9E-01 2.2
3 0.999980785567113 8.8E-05 -3.3E-02 2.1
4 0.999999999740396 1.1E-09 -1.2E-04 -
5 0.999999999740396 0.0E+00 -1.6E-09 -

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 6

The only issue is that we don’t know beforehand if we are dealing with a multiple-root
issue or not. However, we can use previous iteration step information to determine the
multiplicity of the root.

Iterate towards m multiple roots the error is reduced with a constant factor per iteration
given by:

)
1

1(1 m
ee nn

As for our example with 2 multiple roots, the factor is 0.5 which is exactly what we saw
in the iteration step from 7 to 25 in our first example for two multiple roots.

To determine the multiplicity of the root we can use the above formula for two
consecutive iteration steps.

)
1

1(1 m
ee nn and)

1
1(1 m

ee nn .

Subtracting the two equations we get

)
1

1)((11 m
eeee nnnn .

 Replacing en+1 with (xn+1-a) near the root a and en with (xn-a) we get.

)

1
1()

1
1)((

1

1
11 mxx

xx

m
xxxx

nn

nn
nnnn

1

1
1),

1
1(

nn

nn
nn xx

xx
Dwhere

m
D

)
1

1
(

1

nD
m

With the above equation, we can now calculate the multiplicity of the root as we do our
Newton iteration. Using the polynomial

1231279)()4)(3()1()(2342 xxxxxPorxxxxP . We get

 x P(x) P'(x) Dn m q
Initial guess 0.5

1 0.713414634146341 2.2E+00 -1.0E+01
2 0.842942878437970 6.2E-01 -4.8E+00 1.3
3 0.916937117337937 1.7E-01 -2.3E+00 0.57 2.3 1.2
4 0.957125910632703 4.4E-02 -1.1E+00 0.54 2.2 1.2

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 7

5 0.978193460613943 1.1E-02 -5.4E-01 0.52 2.1 1.2
6 0.988999465124113 2.9E-03 -2.7E-01 0.51 2.1 1.2
7 0.994474755305804 7.3E-04 -1.3E-01 0.51 2.0 1.1
8 0.997231047313269 1.8E-04 -6.7E-02 0.50 2.0 1.1
9 0.998613930094809 4.6E-05 -3.3E-02 0.50 2.0 1.1

10 0.999306565270595 1.2E-05 -1.7E-02 0.50 2.0 1.1
11 0.999653182516675 2.9E-06 -8.3E-03 0.50 2.0 1.1
12 0.999826566206109 7.2E-07 -4.2E-03 0.50 2.0 1.1
13 0.999913276837495 1.8E-07 -2.1E-03 0.50 2.0 1.1
14 0.999956636851837 4.5E-08 -1.0E-03 0.50 2.0 1.1
15 0.999978318031447 1.1E-08 -5.2E-04 0.50 2.0 1.1
16 0.999989158927746 2.8E-09 -2.6E-04 0.50 2.0 1.1
17 0.999994579429255 7.1E-10 -1.3E-04 0.50 2.0 1.1
18 0.999997289653755 1.8E-10 -6.5E-05 0.50 2.0 1.1
19 0.999998644904010 4.4E-11 -3.3E-05 0.50 2.0 1.1
20 0.999999322514237 1.1E-11 -1.6E-05 0.50 2.0 1.0
21 0.999999661405383 2.8E-12 -8.1E-06 0.50 2.0 1.0
22 0.999999831034522 6.9E-13 -4.1E-06 0.50 2.0 1.0
23 0.999999916015677 1.7E-13 -2.0E-06 0.50 2.0 1.0
24 0.999999956555190 4.1E-14 -1.0E-06 0.48 1.9 1.0
25 0.999999976999021 1.1E-14 -5.2E-07 0.50 2.0 1.0
26 0.999999996306426 5.3E-15 -2.8E-07 0.94 18.0 -
27 0.999999996306426 0.0E+00 -4.4E-08 0.00 1.0 -

Notice that Dn as expected is 0.5 and m is 2. For a polynomial with a multiplicity of 3, we
get. E.g.

413157)()4()1()(2343 xxxxxPorxxxP .

 x P(x) P'(x) Dn m q
Initial guess 0.5

1 0.659090909090909 4.4E-01 -2.8E+00
2 0.768989234449761 1.3E-01 -1.2E+00 1.2
3 0.844200342036924 4.0E-02 -5.3E-01 0.68 3.2 1.1
4 0.895292762147974 1.2E-02 -2.3E-01 0.68 3.1 1.1
5 0.929807171624113 3.6E-03 -1.0E-01 0.68 3.1 1.1
6 0.953027819025432 1.1E-03 -4.6E-02 0.67 3.1 1.1
7 0.968605165792479 3.2E-04 -2.0E-02 0.67 3.0 1.1
8 0.979034107860224 9.4E-05 -9.0E-03 0.67 3.0 1.1
9 0.986006608556179 2.8E-05 -4.0E-03 0.67 3.0 1.1

10 0.990663864788857 8.3E-06 -1.8E-03 0.67 3.0 1.1

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 8

11 0.993772694924434 2.4E-06 -7.9E-04 0.67 3.0 1.1
12 0.995847030978970 7.3E-07 -3.5E-04 0.67 3.0 1.1
13 0.997230716376341 2.2E-07 -1.6E-04 0.67 3.0 1.1
14 0.998153527238367 6.4E-08 -6.9E-05 0.67 3.0 1.1
15 0.998768892029038 1.9E-08 -3.1E-05 0.67 3.0 1.1
16 0.999179205334757 5.6E-09 -1.4E-05 0.67 3.0 1.1
17 0.999452778575931 1.7E-09 -6.1E-06 0.67 3.0 1.0
18 0.999635174582289 4.9E-10 -2.7E-06 0.67 3.0 1.0
19 0.999756779088727 1.5E-10 -1.2E-06 0.67 3.0 1.0
20 0.999837850465727 4.3E-11 -5.3E-07 0.67 3.0 1.0
21 0.999891897587627 1.3E-11 -2.4E-07 0.67 3.0 1.0
22 0.999927925394456 3.8E-12 -1.1E-07 0.67 3.0 1.0
23 0.999951956279215 1.1E-12 -4.7E-08 0.67 3.0 1.0
24 0.999967946216671 3.3E-13 -2.1E-08 0.67 3.0 1.0
25 0.999978847780829 1.0E-13 -9.2E-09 0.68 3.1 1.0
26 0.999985795662453 2.8E-14 -4.0E-09 0.64 2.8 1.0
27 0.999990197716745 8.0E-15 -1.8E-09 0.63 2.7 1.0
28 0.999994305994514 3.6E-15 -8.6E-10 0.93 15.0 1.1
29 0.999995827925540 4.4E-16 -2.9E-10 0.37 1.6 1.0
30 0.999998662746209 4.4E-16 -1.6E-10 1.86 -1.2 -
31 0.999998662746209 0.0E+00 -1.6E-11 0.00 1.0 -

Again we get Dn = 2/3 and m = 3 as expected.

And by using the multiplier m=3 we get:

Multiplier 3
 x P(x) P'(x) Dn m q
Initial guess 0.5

1 0.977272727272727 4.4E-01 -2.8E+00
2 0.999943181817001 3.5E-05 -4.7E-03 2.6
3 1.000000084812110 5.5E-13 -2.9E-08 0.00 1.0 0.4
4 1.019736926917380 4.4E-16 -6.8E-14 346.85 0.0 1.0
5 0.999956334044330 -2.3E-05 -3.5E-03 -1.00 0.5 2.6
6 0.999999964612765 2.5E-13 -1.7E-08 0.00 1.0 -
7 0.999999964612765 0.0E+00 -1.1E-14 0.00 1.0 -

With 7 correct digits after 7 iterations. Also notice that Newton was throwing a little bit
of course in iteration 4 due to the round-off errors being strong around multiple roots.

Practical implementation

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 9

I have seen one implementation of the above strategy and that is Madsen [1] which uses a
variable Newton step size to ensure quadratic convergence of the Newton method even
for multiple roots. Other methods have been described in McNamee [2].

Halley’s method

Let’s turn our attention to a higher-order method. One of them is Halley which is a cubic
convergence method meaning that for each iteration step, we triple the number of correct
digits in our root.

Halley‘s method uses the iteration:

)()()(2

)()(2
21

nnn

nn
nn

xPxPxP

xPxP
xx

Or sometimes written as: ([5] Peter Acklam)

1

21)(2

)()(
1

)(

)(

n

nn

n

n
nn xP

xPxP

xP

xP
xx

Where
)(

)(
1

n

n
nn xP

xP
xx

 is the usual Newton iteration enhanced with the factor:

1

2)(2

)()(
1

n

nn

xP

xPxP

And are graphically shown below:

Applied to our usual test polynomial:

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 10

24503510)()4)(3)(2)(1()(234 xxxxxPorxxxxxP

We get using a starting point of 0.5 the Halley iteration progress as follows toward the
first root:

 x P(x) m q
Initial guess 0.5

1 0.921033445730429 6.6E+00
2 0.999101217617920 5.5E-01 2.8
3 0.999999998290928 5.4E-03 1.0 2.9
4 1.000000000000000 1.0E-08 1.0 1.7
5 1.000000000000000 -7.1E-15 1.0 1.0

Using 2 iterations less than the Newton method and a convergence rate that approximates
the theoretical 3 for cubic methods.

Applied to our multiple root test polynomial we get as expected a much slower
convergence but still significantly better than the Newton method 27 iterations versus
Halley 17 iterations.

1231279)()4)(3()1()(2342 xxxxxPorxxxxP

 x P(x) m q
Initial guess 0.5

1 0.810337370242215 2.2E+00
2 0.933368912312335 2.5E-01 1.5
3 0.977372635121701 2.8E-02 2.1 1.3
4 0.992409863611796 3.1E-03 2.0 1.3
5 0.997464609321869 3.5E-04 2.0 1.2
6 0.999154274154362 3.9E-05 2.0 1.2
7 0.999718025142576 4.3E-06 2.0 1.1
8 0.999906001018135 4.8E-07 2.0 1.1
9 0.999968666187712 5.3E-08 2.0 1.1

10 0.999989555309201 5.9E-09 2.0 1.1
11 0.999996518432377 6.5E-10 2.0 1.1
12 0.999998839531160 7.3E-11 2.0 1.1
13 0.999999612788777 8.1E-12 2.0 1.1
14 0.999999870639296 9.0E-13 2.0 1.1
15 0.999999957852718 1.0E-13 2.0 1.1
16 0.999999980034920 8.9E-15 1.7 -
17 0.999999980034920 0.0E+00 1.0 -

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 11

As for the Newton method applying the same technique, we find that Dn is given by

1

1
1 ,

1

2
1

nn

nn
nn xx

xx
Dwhere

m
D

1
1

2

1

nD

m

Equivalent to the Newton reduction the Halley reduction is a factor of 2/(m+1) so by
multiplier the step size with the reverse factor we should ensure a cubic convergence rate.

Our modified Halley will be:

)()()(2

)()(2

2

1
21

nnn

nn
nn

xPxPxP

xPxPm
xx

Which could also be written as:

1

21)(2

)()(
1

)(

)(

2

1

n

nn

n

n
nn xP

xPxP

xP

xPm
xx

Using our modified Halley iteration, we get to use our multiple root test polynomials:

1231279)()4)(3()1()(2342 xxxxxPorxxxxP

 x P(x) m q
Initial guess 0.5

1 0.965506055363322 2.2E+00
2 0.999833351530136 7.3E-03 2.6
3 0.999999996140290 1.7E-07 1.0 2.1
4 0.999999986501257 -1.8E-15 1.0 0.9
5 1.000000014202640 1.8E-15 -0.5 -
6 1.000000014202640 0.0E+00 1.0 -

Again as we expected approached cubic convergence and found the root to 7 correct
digits in just 6 iterations.

Hansen & Patrick [4] is a special case of Halley and use this variation:

)(2

)()(
)(

2

1
)(

1

n

nn
n

n
nn

xP

xPxP
xP

m

m
xP

xx

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 12

Or written in another way:

1

21)(2

)()(

2

1

)(

)(

n

nn

n

n
nn xP

xPxP

m

m

xP

xP
xx

Where
)(

)(
1

n

n
nn xP

xP
xx

 is the usual Newton iteration modified with the factor:

1

2)(2

)()(

2

1

n

nn

xP

xPxP

m

m

This could also have been shown using the Halley formula:

1

21)(2

)()(
1

)(

)(

n

nn

n

n
nn xP

xPxP

xP

xP
xx

Replacing P(xn) with:

)()()(xPaxxP r
m

))()()(()()(1 xmPxPaxaxxP rr
m

))()1()()(2)()(()()(22 xPmmxPaxmxPaxaxxP rrr
m

Into :

1

2)(2

)()(
1

n

nn

xP

xPxP

You get:

1

2

2

))()()((2

)()1()()(2)()(
1

nrnr

nrnrnrnr

xmPxPax

xmPmxPaxmxPxaxP

Eliminating all (a-x)2 and (x-a) when close to the root a you get

1

2

2

1

2

)1(
1

))((2

)()1()(
1

11

2

1

2

m

m

m

m

m

mm

xmP

xmPmxP

nr

nrnr

For m=1 we get the factor 1, m=2 we get the factor 1.33 and for m=3 we get 1.5 and for
m=4 we get 1.6. Substituting this result into our original

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 13

 1

2

)(

)(

2

1
1 m

m

xP

xPm
xx

n

n
nn

)(

)(
1

n

n
nn xP

xP
mxx

Which is the usual Newton iteration for multiple roots.

Using [4] for multiple roots or our modified Halley iteration we get similar results.

Householder 3rd order method

Let’s turn our attention to the next higher-order methods. The Household has generalized
the higher order methods in which 1st order is Newton’s and 2nd order is Halley’s method.
Householders 3rd order has a quantic convergence rate.

The Householder’s 3rd order method uses the following iteration:

)()()()()(6)(6

)()(3)()(6
23

22

1
nnnnnn

nnnn
nn xPxPxPxPxPxP

xPxPxPxP
xx

See [3] Pascal Sebah and Xavier Gourdon (2001.

Substituting:

)(

)(

)(

)(

)(

)(

n

n

n

n

n

n

xP

xP
v

xP

xP
u

xP

xP
t

We can now write the householder’s 3rd order as follows:

)
6

(1

)5.01(
1 vt

ut

tut
xx nn

Applied to our usual test polynomial:

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 14

24503510)()4)(3)(2)(1()(234 xxxxxPorxxxxxP

We get using a starting point of 0.5 the Householder iteration progress as follows towards
the first root:

 x P(x) m q
Initial guess 0.5

1 0.970345147974213 6.6E+00
2 0.999998181755405 1.9E-01 3.8
3 1.000000000000000 1.1E-05 1.0 -
4 1.000000000000000 0.0E+00 1.0 -

Using 3 iterations less than the Newton method and one less than Halley’s method and a
convergence rate that approximates the theoretical 4 for quartic methods.

Applied to our multiple root test polynomial we get as expected a much slower
convergence but still significantly better than the Newton method’s 27 iterations versus
Halley’s 17 iterations and Householder 3rd order of 14.

1231279)()4)(3()1()(2342 xxxxxPorxxxxP

 x P(x) m q
Initial guess 0.5

1 0.861059798855960 2.2E+00
2 0.964231209357945 1.3E-01 1.6
3 0.990990668543017 7.9E-03 2.1 1.4
4 0.997743431685646 4.9E-04 2.0 1.3
5 0.999435592582946 3.1E-05 2.0 1.2
6 0.999858881551644 1.9E-06 2.0 1.2
7 0.999964719352181 1.2E-07 2.0 1.2
8 0.999991179774371 7.5E-09 2.0 1.1
9 0.999997794908371 4.7E-10 2.0 1.1

10 0.999999448583258 2.9E-11 2.0 1.1
11 0.999999862128834 1.8E-12 2.0 1.1
12 0.999999970461575 1.2E-13 2.1 1.1
13 0.999999993287772 5.3E-15 1.8 -
14 0.999999993287772 0.0E+00 1.0 -

 As for the Newton methods when applying the same technique we find that Dn for
householder 3rd order is given by

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 15

1

1
1 ,

2

3
1

nn

nn
nn xx

xx
Dwhere

m
D

2
1

3

1

nD

m

Equivalent to the Newton reduction the Householder 3rd order reduction is a factor of
3/(m+2) so by multiplier the step size with the reverse factor we should ensure a quartic
convergence rate.

Our modified Householder 3rd order will be:

)()()()()(6)(6

)()(3)()(6

3

2
23

22

1
nnnnnn

nnnn
nn xPxPxPxPxPxP

xPxPxPxPm
xx

Or using the same substitution as before:

)

6
(1

)5.01(

3

2
1 vt

ut

tutm
xx nn

Using our modified Householder 3rd order iteration we get using our multiple root test
polynomials:

1231279)()4)(3()1()(2342 xxxxxPorxxxxP

 x P(x) m q
Initial guess 0.5

1 0.981413065141280 2.2E+00
2 0.999975915594327 2.1E-03 2.7
3 0.999999999958017 3.5E-09 1.0 -
4 0.999999999958017 0.0E+00 1.0 -

Again as we expected approached cubic convergence and found the multiple roots to 10
correct digits in just 4 iterations.

Conclusion

Newton, Halley’s, and higher order Householders can all be modified to deal with the
multiple roots issue that will ensure the same convergence rate as for non-multiple roots.
Thereby eliminating one of the weaknesses these methods have.

Reference

Modified Newton & Higher order iterations for multiple roots

10 February 2023 Page 16

1. Kaj Madsen, A Root-finding Algorithm based on Newton’s Method, Bit 13
(1973) page 71-75

2. McNamee, J.M., Numerical Methods for Roots of Polynomials, Part I, Elsevier,
Kidlington, Oxford 2009.

3. Pascal Sebah and Xavier Gourdon (2001). "Newton's method and high order iteration"
4. E Hansen & M. Ptraick, A family of root finding methods, Numerical. Math 27 (1077) 257-

269
5. Peter Acklam, A small paper on Halley’s method, http://home/online.no~pjacklam, 23rd

December 2002

