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A Modified Newton and higher orders Iteration for 
multiple roots. 

By Henrik Vestermark (hve@hvks.com) 
 
Abstract:  
In general Newton’s method for finding roots of polynomials is an effective and easy 
algorithm to both implement and use. However certain weakness is exposed when trying 
to find roots in a polynomial with multiple roots. This paper highlights the weakness and 
devised a modification to the general Newton algorithm that effectively can cope with the 
multiple roots issue. Furthermore, we also address a solution for higher order methods as 
well which include Halley’s and Householders 3rd order methods. 
 
 
Introduction: 
Newton’s method for finding the roots of polynomials is one of the most popular and 
simple’s methods. Newton’s methods use the following algorithm to progressively find 
values closer and closer to the root. 
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Graphically the next iteration step can be visualized by the interception of the tangent and 
the x-axis as pictured below.  

 
 
Consider the polynomial: 
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Using a starting point of 0.5 the Newton iteration progress as follows toward the first 
root: 
 

 x P(x) 
Initial guess 0.5  

1 0.798295454545455 6.6E+00 
2 0.950817599863883 1.7E+00 
3 0.996063283034122 3.2E-01 
4 0.999971872651986 2.4E-02 
5 0.999999998549667 1.7E-04 
6 0.999999999999999 8.7E-09 
7 1.000000000000000 7.1E-15 

 
 
As we can see we get the first root x=1 after only 7 iterations. We also notice that after 
the second iteration x2=0.95, we roughly double the number of correct digits towards the 
first root for each iteration. An iteration method that doubles the number of correct digits 
for each iteration is said to have a convergence rate of 2 or a quadratic convergence rate. 
 
Now let’s change the polynomial and introduce a double root at x=1; 
 

1231279)()4)(3()1()( 2342  xxxxxPorxxxxP  
 
With the same starting point x=0.5, we get a much slower convergence and after 27 
iterations we get no more improvement towards the first root of x=1 and the result is only 
accurate to approximately the first 8 digits. 
 

 x P(x) 
Initial guess 0.5  

1 0.713414634146341 2.2E+00 
2 0.842942878437970 6.2E-01 
3 0.916937117337937 1.7E-01 
4 0.957125910632703 4.4E-02 
5 0.978193460613943 1.1E-02 
6 0.988999465124113 2.9E-03 
7 0.994474755305804 7.3E-04 
8 0.997231047313269 1.8E-04 
9 0.998613930094809 4.6E-05 

10 0.999306565270595 1.2E-05 
11 0.999653182516675 2.9E-06 
12 0.999826566206109 7.2E-07 
13 0.999913276837495 1.8E-07 
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14 0.999956636851837 4.5E-08 
15 0.999978318031447 1.1E-08 
16 0.999989158927746 2.8E-09 
17 0.999994579429255 7.1E-10 
18 0.999997289653755 1.8E-10 
19 0.999998644904010 4.4E-11 
20 0.999999322514237 1.1E-11 
21 0.999999661405383 2.8E-12 
22 0.999999831034522 6.9E-13 
23 0.999999916015677 1.7E-13 
24 0.999999956555190 4.1E-14 
25 0.999999976999021 1.1E-14 
26 0.999999996306426 5.3E-15 
27 0.999999996306426 0.0E+00 

 
What exactly happens here?  
 

If )4)(3()1()( 2  xxxxP  Then )31234)(1()(' 2  xxxxP  
 
The root x=1 is both a root for the original Polynomial P(x) but also of P’(x). In a 
Newton iteration, both P(x) and P’(x) go towards 0 introducing round-off errors in the 
accuracy of calculating the next xn+1 in a Newton iteration. For illustration, we repeat the 
iteration step but include the P’(x). Furthermore, we introduce the convergence rate q as 
well. 
 

 x P(x) P'(x) q 
Initial guess 0.5    

1 0.713414634146341 2.2E+00 -1.0E+01  
2 0.842942878437970 6.2E-01 -4.8E+00 1.3 
3 0.916937117337937 1.7E-01 -2.3E+00 1.2 
4 0.957125910632703 4.4E-02 -1.1E+00 1.2 
5 0.978193460613943 1.1E-02 -5.4E-01 1.2 
6 0.988999465124113 2.9E-03 -2.7E-01 1.2 
7 0.994474755305804 7.3E-04 -1.3E-01 1.1 
8 0.997231047313269 1.8E-04 -6.7E-02 1.1 
9 0.998613930094809 4.6E-05 -3.3E-02 1.1 

10 0.999306565270595 1.2E-05 -1.7E-02 1.1 
11 0.999653182516675 2.9E-06 -8.3E-03 1.1 
12 0.999826566206109 7.2E-07 -4.2E-03 1.1 
13 0.999913276837495 1.8E-07 -2.1E-03 1.1 
14 0.999956636851837 4.5E-08 -1.0E-03 1.1 
15 0.999978318031447 1.1E-08 -5.2E-04 1.1 
16 0.999989158927746 2.8E-09 -2.6E-04 1.1 
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17 0.999994579429255 7.1E-10 -1.3E-04 1.1 
18 0.999997289653755 1.8E-10 -6.5E-05 1.1 
19 0.999998644904010 4.4E-11 -3.3E-05 1.1 
20 0.999999322514237 1.1E-11 -1.6E-05 1.0 
21 0.999999661405383 2.8E-12 -8.1E-06 1.0 
22 0.999999831034522 6.9E-13 -4.1E-06 1.0 
23 0.999999916015677 1.7E-13 -2.0E-06 1.0 
24 0.999999956555190 4.1E-14 -1.0E-06 1.0 
25 0.999999976999021 1.1E-14 -5.2E-07 1.0 
26 0.999999996306426 5.3E-15 -2.8E-07 - 
27 0.999999996306426 0.0E+00 -4.4E-08 - 

 
 
We notice a couple of things; the convergence rate q is much slower than for our first 
example; ~2 versus ~1.1. Furthermore, we can see for each iteration that the root 
convergence with a linear factor of 2 instead of what we should expect from the quadratic 
factor 2 from our first example.  
For higher orders multiplicity of roots, it gets even worse. E.g. 
 

If )4()1()( 3  xxxP  Then )134()1()(' 2  xxxP  
 
After 31 iterations we get x=0.999998662746209 which is only accurate to 
approximately the first 5 digits. 
 

 x P(x) P'(x) q 
Initial guess 0.5    

1 0.659090909090909 4.4E-01 -2.8E+00  
2 0.768989234449761 1.3E-01 -1.2E+00 1.2 
…     
29 0.999995827925540 4.4E-16 -2.9E-10 1.0 
30 0.999998662746209 4.4E-16 -1.6E-10 - 
31 0.999998662746209 0.0E+00 -1.6E-11 - 

 
 
What to do about multiple roots with the Newton iteration?: 
To see what is going on with the Newton iteration for multiple roots we first have to 
rewrite the Polynomial to the form: 
 

)()()( xPaxxP r
m  

 
Where we have separated the multiple roots (x-a)m from the remainder polynomial Pr(x) 
that have roots well separated from a. 
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When x is in the neighborhood of the multiple roots a; or 
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Near the root a we will have that )(' nxg is approximate constant. Differentiate the 

above equation you get: 
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The above equation shows that our Newton step is reduced with a factor equivalent to the 
multiplicity of the root m. For m=2 the accuracy is only improved with a linear factor of 
2. 
  
To overcome this reduction of the Newton step size we could multiply it with m so we 
instead used the modified Newton iteration. 
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  When we encounter multiple roots. 

 
Applying the modified equation we see that we quickly converge in just 5 iterations to 
the root with a quadratic factor q ~ 2 for the normal use of the Newton method with an 
accuracy of more than 9 digits. 
 

 x P(x) P'(x) q 
Initial guess 0.5    

1 0.903846153846154 1.3E+00 -6.5E+00  
2 0.994609766904563 3.1E-02 -6.9E-01 2.2 
3 0.999980785567113 8.8E-05 -3.3E-02 2.1 
4 0.999999999740396 1.1E-09 -1.2E-04 - 
5 0.999999999740396 0.0E+00 -1.6E-09 - 
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The only issue is that we don’t know beforehand if we are dealing with a multiple-root 
issue or not. However, we can use previous iteration step information to determine the 
multiplicity of the root. 
 
Iterate towards m multiple roots the error is reduced with a constant factor per iteration 
given by:  
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As for our example with 2 multiple roots, the factor is 0.5 which is exactly what we saw 
in the iteration step from 7 to 25 in our first example for two multiple roots.  
 
To determine the multiplicity of the root we can use the above formula for two 
consecutive iteration steps. 
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Subtracting the two equations we get 
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 Replacing en+1 with (xn+1-a) near the root a and en with (xn-a) we get. 
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With the above equation, we can now calculate the multiplicity of the root as we do our 
Newton iteration. Using the polynomial 
 

1231279)()4)(3()1()( 2342  xxxxxPorxxxxP . We get 
 

 x P(x) P'(x) Dn m q 
Initial guess 0.5      

1 0.713414634146341 2.2E+00 -1.0E+01    
2 0.842942878437970 6.2E-01 -4.8E+00   1.3 
3 0.916937117337937 1.7E-01 -2.3E+00 0.57 2.3 1.2 
4 0.957125910632703 4.4E-02 -1.1E+00 0.54 2.2 1.2 
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5 0.978193460613943 1.1E-02 -5.4E-01 0.52 2.1 1.2 
6 0.988999465124113 2.9E-03 -2.7E-01 0.51 2.1 1.2 
7 0.994474755305804 7.3E-04 -1.3E-01 0.51 2.0 1.1 
8 0.997231047313269 1.8E-04 -6.7E-02 0.50 2.0 1.1 
9 0.998613930094809 4.6E-05 -3.3E-02 0.50 2.0 1.1 

10 0.999306565270595 1.2E-05 -1.7E-02 0.50 2.0 1.1 
11 0.999653182516675 2.9E-06 -8.3E-03 0.50 2.0 1.1 
12 0.999826566206109 7.2E-07 -4.2E-03 0.50 2.0 1.1 
13 0.999913276837495 1.8E-07 -2.1E-03 0.50 2.0 1.1 
14 0.999956636851837 4.5E-08 -1.0E-03 0.50 2.0 1.1 
15 0.999978318031447 1.1E-08 -5.2E-04 0.50 2.0 1.1 
16 0.999989158927746 2.8E-09 -2.6E-04 0.50 2.0 1.1 
17 0.999994579429255 7.1E-10 -1.3E-04 0.50 2.0 1.1 
18 0.999997289653755 1.8E-10 -6.5E-05 0.50 2.0 1.1 
19 0.999998644904010 4.4E-11 -3.3E-05 0.50 2.0 1.1 
20 0.999999322514237 1.1E-11 -1.6E-05 0.50 2.0 1.0 
21 0.999999661405383 2.8E-12 -8.1E-06 0.50 2.0 1.0 
22 0.999999831034522 6.9E-13 -4.1E-06 0.50 2.0 1.0 
23 0.999999916015677 1.7E-13 -2.0E-06 0.50 2.0 1.0 
24 0.999999956555190 4.1E-14 -1.0E-06 0.48 1.9 1.0 
25 0.999999976999021 1.1E-14 -5.2E-07 0.50 2.0 1.0 
26 0.999999996306426 5.3E-15 -2.8E-07 0.94 18.0 - 
27 0.999999996306426 0.0E+00 -4.4E-08 0.00 1.0 - 

 
  
Notice that Dn as expected is 0.5 and m is 2. For a polynomial with a multiplicity of 3, we 
get. E.g. 
 

413157)()4()1()( 2343  xxxxxPorxxxP .  
 
 

 x P(x) P'(x) Dn m q 
Initial guess 0.5      

1 0.659090909090909 4.4E-01 -2.8E+00    
2 0.768989234449761 1.3E-01 -1.2E+00   1.2 
3 0.844200342036924 4.0E-02 -5.3E-01 0.68 3.2 1.1 
4 0.895292762147974 1.2E-02 -2.3E-01 0.68 3.1 1.1 
5 0.929807171624113 3.6E-03 -1.0E-01 0.68 3.1 1.1 
6 0.953027819025432 1.1E-03 -4.6E-02 0.67 3.1 1.1 
7 0.968605165792479 3.2E-04 -2.0E-02 0.67 3.0 1.1 
8 0.979034107860224 9.4E-05 -9.0E-03 0.67 3.0 1.1 
9 0.986006608556179 2.8E-05 -4.0E-03 0.67 3.0 1.1 

10 0.990663864788857 8.3E-06 -1.8E-03 0.67 3.0 1.1 
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11 0.993772694924434 2.4E-06 -7.9E-04 0.67 3.0 1.1 
12 0.995847030978970 7.3E-07 -3.5E-04 0.67 3.0 1.1 
13 0.997230716376341 2.2E-07 -1.6E-04 0.67 3.0 1.1 
14 0.998153527238367 6.4E-08 -6.9E-05 0.67 3.0 1.1 
15 0.998768892029038 1.9E-08 -3.1E-05 0.67 3.0 1.1 
16 0.999179205334757 5.6E-09 -1.4E-05 0.67 3.0 1.1 
17 0.999452778575931 1.7E-09 -6.1E-06 0.67 3.0 1.0 
18 0.999635174582289 4.9E-10 -2.7E-06 0.67 3.0 1.0 
19 0.999756779088727 1.5E-10 -1.2E-06 0.67 3.0 1.0 
20 0.999837850465727 4.3E-11 -5.3E-07 0.67 3.0 1.0 
21 0.999891897587627 1.3E-11 -2.4E-07 0.67 3.0 1.0 
22 0.999927925394456 3.8E-12 -1.1E-07 0.67 3.0 1.0 
23 0.999951956279215 1.1E-12 -4.7E-08 0.67 3.0 1.0 
24 0.999967946216671 3.3E-13 -2.1E-08 0.67 3.0 1.0 
25 0.999978847780829 1.0E-13 -9.2E-09 0.68 3.1 1.0 
26 0.999985795662453 2.8E-14 -4.0E-09 0.64 2.8 1.0 
27 0.999990197716745 8.0E-15 -1.8E-09 0.63 2.7 1.0 
28 0.999994305994514 3.6E-15 -8.6E-10 0.93 15.0 1.1 
29 0.999995827925540 4.4E-16 -2.9E-10 0.37 1.6 1.0 
30 0.999998662746209 4.4E-16 -1.6E-10 1.86 -1.2 - 
31 0.999998662746209 0.0E+00 -1.6E-11 0.00 1.0 - 

 
Again we get Dn = 2/3 and m = 3 as expected. 
 
And by using the multiplier m=3 we get: 
 

Multiplier 3      
 x P(x) P'(x) Dn m q 
Initial guess 0.5      

1 0.977272727272727 4.4E-01 -2.8E+00    
2 0.999943181817001 3.5E-05 -4.7E-03   2.6 
3 1.000000084812110 5.5E-13 -2.9E-08 0.00 1.0 0.4 
4 1.019736926917380 4.4E-16 -6.8E-14 346.85 0.0 1.0 
5 0.999956334044330 -2.3E-05 -3.5E-03 -1.00 0.5 2.6 
6 0.999999964612765 2.5E-13 -1.7E-08 0.00 1.0 - 
7 0.999999964612765 0.0E+00 -1.1E-14 0.00 1.0 - 

 
 
With 7 correct digits after 7 iterations. Also notice that Newton was throwing a little bit 
of course in iteration 4 due to the round-off errors being strong around multiple roots. 
 
 
Practical implementation 
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I have seen one implementation of the above strategy and that is Madsen [1] which uses a 
variable Newton step size to ensure quadratic convergence of the Newton method even 
for multiple roots. Other methods have been described in McNamee [2]. 
 
 
Halley’s method 
 
Let’s turn our attention to a higher-order method. One of them is Halley which is a cubic 
convergence method meaning that for each iteration step, we triple the number of correct 
digits in our root.  
 
Halley‘s method uses the iteration: 
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  is the usual Newton iteration enhanced with the factor:  
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And are graphically shown below: 
 

 
 
Applied to our usual test polynomial: 
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We get using a starting point of 0.5 the Halley iteration progress as follows toward the 
first root: 
 

 x P(x) m q 
Initial guess 0.5    

1 0.921033445730429 6.6E+00   
2 0.999101217617920 5.5E-01  2.8 
3 0.999999998290928 5.4E-03 1.0 2.9 
4 1.000000000000000 1.0E-08 1.0 1.7 
5 1.000000000000000 -7.1E-15 1.0 1.0 

 
Using 2 iterations less than the Newton method and a convergence rate that approximates 
the theoretical 3 for cubic methods. 
 
Applied to our multiple root test polynomial we get as expected a much slower 
convergence but still significantly better than the Newton method 27 iterations versus 
Halley 17 iterations. 
 

1231279)()4)(3()1()( 2342  xxxxxPorxxxxP  
 
 

 x P(x) m q 
Initial guess 0.5    

1 0.810337370242215 2.2E+00   
2 0.933368912312335 2.5E-01  1.5 
3 0.977372635121701 2.8E-02 2.1 1.3 
4 0.992409863611796 3.1E-03 2.0 1.3 
5 0.997464609321869 3.5E-04 2.0 1.2 
6 0.999154274154362 3.9E-05 2.0 1.2 
7 0.999718025142576 4.3E-06 2.0 1.1 
8 0.999906001018135 4.8E-07 2.0 1.1 
9 0.999968666187712 5.3E-08 2.0 1.1 

10 0.999989555309201 5.9E-09 2.0 1.1 
11 0.999996518432377 6.5E-10 2.0 1.1 
12 0.999998839531160 7.3E-11 2.0 1.1 
13 0.999999612788777 8.1E-12 2.0 1.1 
14 0.999999870639296 9.0E-13 2.0 1.1 
15 0.999999957852718 1.0E-13 2.0 1.1 
16 0.999999980034920 8.9E-15 1.7 - 
17 0.999999980034920 0.0E+00 1.0 - 
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As for the Newton method applying the same technique, we find that Dn is given by  
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Equivalent to the Newton reduction the Halley reduction is a factor of 2/(m+1) so by 
multiplier the step size with the reverse factor we should ensure a cubic convergence rate. 
 
Our modified Halley will be: 
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Using our modified Halley iteration, we get to use our multiple root test polynomials: 
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 x P(x) m q 
Initial guess 0.5    

1 0.965506055363322 2.2E+00   
2 0.999833351530136 7.3E-03  2.6 
3 0.999999996140290 1.7E-07 1.0 2.1 
4 0.999999986501257 -1.8E-15 1.0 0.9 
5 1.000000014202640 1.8E-15 -0.5 - 
6 1.000000014202640 0.0E+00 1.0 - 

 
Again as we expected approached cubic convergence and found the root to 7 correct 
digits in just 6 iterations.  
 
Hansen & Patrick [4] is a special case of Halley and use this variation:  
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Or written in another way: 
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  is the usual Newton iteration modified with the factor:  
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This could also have been shown using the Halley formula: 
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Replacing P(xn) with: 
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Eliminating all (a-x)2 and (x-a) when close to the root a you get 
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For m=1 we get the factor 1, m=2 we get the factor 1.33 and for m=3 we get 1.5 and for 
m=4 we get 1.6. Substituting this result into our original 
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Which is the usual Newton iteration for multiple roots. 
 
Using [4] for multiple roots or our modified Halley iteration we get similar results. 
 
 
 
Householder 3rd order method 
 
Let’s turn our attention to the next higher-order methods. The Household has generalized 
the higher order methods in which 1st order is Newton’s and 2nd order is Halley’s method.  
Householders 3rd order has a quantic convergence rate.  
 
The Householder’s 3rd order method uses the following iteration: 
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See [3] Pascal Sebah and Xavier Gourdon (2001.  
 
Substituting:  
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We can now write the householder’s 3rd order as follows: 
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Applied to our usual test polynomial: 
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We get using a starting point of 0.5 the Householder iteration progress as follows towards 
the first root: 
 
 

 x P(x) m q 
Initial guess 0.5    

1 0.970345147974213 6.6E+00   
2 0.999998181755405 1.9E-01  3.8 
3 1.000000000000000 1.1E-05 1.0 - 
4 1.000000000000000 0.0E+00 1.0 - 

 
 
Using 3 iterations less than the Newton method and one less than Halley’s method and a 
convergence rate that approximates the theoretical 4 for quartic methods. 
 
Applied to our multiple root test polynomial we get as expected a much slower 
convergence but still significantly better than the Newton method’s 27 iterations versus 
Halley’s 17 iterations and Householder 3rd order of 14. 
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 x P(x) m q 
Initial guess 0.5    

1 0.861059798855960 2.2E+00   
2 0.964231209357945 1.3E-01  1.6 
3 0.990990668543017 7.9E-03 2.1 1.4 
4 0.997743431685646 4.9E-04 2.0 1.3 
5 0.999435592582946 3.1E-05 2.0 1.2 
6 0.999858881551644 1.9E-06 2.0 1.2 
7 0.999964719352181 1.2E-07 2.0 1.2 
8 0.999991179774371 7.5E-09 2.0 1.1 
9 0.999997794908371 4.7E-10 2.0 1.1 

10 0.999999448583258 2.9E-11 2.0 1.1 
11 0.999999862128834 1.8E-12 2.0 1.1 
12 0.999999970461575 1.2E-13 2.1 1.1 
13 0.999999993287772 5.3E-15 1.8 - 
14 0.999999993287772 0.0E+00 1.0 - 

 
 

 As for the Newton methods when applying the same technique we find that Dn for 
householder 3rd order is given by  
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Equivalent to the Newton reduction the Householder 3rd order reduction is a factor of 
3/(m+2) so by multiplier the step size with the reverse factor we should ensure a quartic 
convergence rate. 
 
Our modified Householder 3rd order will be: 
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Or using the same substitution as before: 
 

 
)

6
(1

)5.01(

3

2
1 vt

ut

tutm
xx nn




  

 
Using our modified Householder 3rd order iteration we get using our multiple root test 
polynomials: 
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 x P(x) m q 
Initial guess 0.5    

1 0.981413065141280 2.2E+00   
2 0.999975915594327 2.1E-03  2.7 
3 0.999999999958017 3.5E-09 1.0 - 
4 0.999999999958017 0.0E+00 1.0 - 

 
Again as we expected approached cubic convergence and found the multiple roots to 10 
correct digits in just 4 iterations.  
 
Conclusion 
 
Newton, Halley’s, and higher order Householders can all be modified to deal with the 
multiple roots issue that will ensure the same convergence rate as for non-multiple roots. 
Thereby eliminating one of the weaknesses these methods have. 
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